Last modified: 2024-05-14
Abstract
%%%%%%%%%%%%%%%%%%%% author.tex %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% sample root file for your "abstract" to the IFCS 2024 Conference
%
% Use this file as a template for your own input.
%
%%%%%%%%%%%%%%%% Springer %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% RECOMMENDED %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\documentclass[graybox]{IFCS2024}
\usepackage{type1cm} % activate if the above 3 fonts are
% not available on your system
%
\usepackage{makeidx} % allows index generation
\usepackage{multicol} % used for the two-column index
\usepackage[bottom]{footmisc}% places footnotes at page bottom
\usepackage{newtxtext} %
\usepackage[varvw]{newtxmath} % selects Times Roman as basic font
% DO NOT USE OTHER COMMANDS OR MACROS
\makeindex % used for the subject index
% please use the style svind.ist with
% your makeindex program
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
\title*{Expected Size of Random Fuzzy Concept Lattices
%\protect\linebreak
}
\titlerunning{Random Fuzzy Concept Lattices} %for an abbreviated version of your contribution title if the original one is too long
\author{Radim Belohlavek and Richard Emilion}
%\authorrunning{Name of First Author and Name of Second Author} %If there are more than two authors, please, abbreviate the authors' list using 'et al'
\institute{Radim Belohlavek \at Palacky University, Olomuc, Czech Republic, \email{radim.belohlavek@inf.upol.cz}
\and Richard Emilion \at Institut Denis Poisson, University of Orl\'eans, France, \email{richard.emilion1@univ-orleans.fr}}
%
% Use the package "url.sty" to avoid
% problems with special characters
% used in your e-mail or web address
%
\maketitle
\abstract{In our many-valued logic context, truth degrees form the chain $L=\{0, \frac{1}{q},\dots,\frac{q-1}{q}, 1\}$, for a positive integer $q$, with a many-valued implication denoted $\to$. Given a probability space $(\Omega,\mathcal{F},P)$, a {\it random fuzzy context} is a triplet $\langle X,Y,I\rangle$, where $X = \{1,2,\dots,n\}$ is a set of $n$ objects, $Y=\{1,2,\dots,m\}$ is a set of $m$ attributes, and $I$ is a $L$-valued random matrix indexed by $X \times Y$, assigning to each $(x,y) \in X \times Y$ the {\it random} degree $I(x,y)(\omega) \in L, \omega \in \Omega,$ to which object $x$ has attribute $y$. Following \cite{Bel:FRS,Pol:FB}, we define
\begin{align}
\forall A \in L^X, \forall y \in Y,\; A^{\uparrow}(y)(\omega) &=
\textstyle{\bigwedge}_{x \in X}(A(x) \rightarrow I(x,y)(\omega)), \\
\forall B \in L^Y, \forall x \in X, \; B^{\downarrow}(x)(\omega) &=
\textstyle{\bigwedge}_{y \in Y}(B(y) \rightarrow I(x,y)(\omega)), \\
\mathcal{B}(X,Y,I)(\omega) &=\{\langle A,B \rangle \in {L}^X \times {L}^Y \,|\, A^\uparrow(\omega)=B, B^\downarrow(\omega)=A\}.
\end{align}
According to \cite{Bel:FRS,Bel:Clofl}, $\mathcal{B}(X,Y,I)(\omega)$ is the fuzzy concept lattice w.r.t. the context $(X,Y, I(.,.)(\omega))$ which is lattice-isomorphic to the lattice of closed fuzzy sets:
$$
\mathrm{Ext}(I)(\omega)= \{A\in L^X \mid A^{\uparrow\downarrow}(\omega) = A\}.
$$
Assuming that the entries of $I$ are independent and that the entries in column $y$ are i.i.d. with distribution $p_y$, only depending on $y$, our main results concern the computation of
$P(A^{\uparrow\downarrow} = A)$ (resp. of $P(\langle A,B\rangle\ \in \mathcal{B}(X,Y,I))$ which yields directly the expected size of $\mathcal{B}(X,Y,I)$, generalizing the results obtained in the binary case ($q =1$) \cite{Lhote, EmLe:Srglncfi, Klim}.
}
\keywords{random, fuzzy, concept, lattice}
%%%%%%% END OF ABSTRACT
\begin{thebibliography}{99.}%
%
\bibitem{Bel:FRS}
Belohlavek, R.: Fuzzy Relational Systems: Foundations and Principles.
Kluwer, New York (2002)
\bibitem{Pol:FB}
Pollandt, S.: Fuzzy Begriffe. Springer, Berlin (1997)
% Journal paper
\bibitem{Bel:Clofl}
Belohlavek, R., Concept lattices and order in fuzzy logic.
Ann. Pure Appl. Logic \textbf{128}(1--3): 277--298 (2004)
\bibitem{Lhote}
Lhote et al.: Average Number of Frequent (Closed) Patterns in Bernoulli and Markovian Databases.
In: \emph{Fifth IEEE International Conference on Data Mining} (ICDM'05), Houston, Texas, 713--716 (2005)
\bibitem{EmLe:Srglncfi}
Emilion, R., L\'evy G.: Size of random Galois lattices and number of closed frequent itemsets.
Discrete Appl. Math. \textbf{157}(13): 2945--2957 (2009)
%
% Journal paper by DOI
\bibitem{Klim}
Klimushkin et al.: Approaches to the Selection of Relevant Concepts in the Case of Noisy Data. In: Kwuida L., Serkaya B. (Eds.) Formal Concept Analysis (IFCA 2010). LNCS vol. 5986, pp. 255-266. Springer, Berlin, Heidelberg.
\url{https://doi.org/10.1007/978-3-642-11928-6\textunderscore18}
%/10.1007/978-3-642-11928-6_}
% Chapter in an edited book
\end{thebibliography}
\end{document}
Keywords
References
Belohlavek, R.(2022). Fuzzy Relational Systems: Foundations and Principles.
Kluwer, New York
Pollandt, S.: Fuzzy Begriffe. Springer, Berlin (1997)
Belohlavek, R. (2004). Concept lattices and order in fuzzy logic.
Ann. Pure Appl. Logic \textbf{128}(1--3): 277--298.
Lhote et al. (2005). Average Number of Frequent (Closed) Patterns in Bernoulli and Markovian Databases. In: \emph{Fifth IEEE International Conference on Data Mining} (ICDM'05), Houston, Texas, 713--716.
Emilion, R., L\'evy G. (2009). Size of random Galois lattices and number of closed frequent itemsets. Discrete Appl. Math. \textbf{157}(13): 2945--2957.
Klimushkin et al. (2010). Approaches to the Selection of Relevant Concepts in the Case of Noisy Data. In: Kwuida L., Serkaya B. (Eds.) Formal Concept Analysis (IFCA 2010). LNCS vol. 5986, pp. 255-266. Springer, Berlin, Heidelberg.
\url{https://doi.org/10.1007/978-3-642-11928-6\textunderscore18}
%/10.1007/978-3-642-11928-6_}